

Agenda

Why? How?
We leveraged the powerful
combination of Laravel,
Livewire, and Serverless to
build a modern
web-application in PHP
currently named Spreaker Next

What?
The need to push the
boundaries of our web
listening and interaction
experience, that was stuck on
a 15 years old monolith

The process, technical choices,
challenges we faced, and the
results achieved.

Position here the
podcast thumbnail

image

Technical Leader, Platform Team at Spreaker

Full-time dad of two, Lego addict and occasional
speaker

 @dymissy

 https://www.linkedin.com/in/simonedamico/

✉ simone.damico@spreaker.com

Spreaker is a podcast platform that offers a
comprehensive solution for podcast enthusiasts.

Spreaker is an all-in-one podcast platform for:
● Hosting
● Distributing
● Monetize
● Discover and Listen to podcasts

We serve 100M+ requests per day on spreaker.com
only

WHO I AM

Simone
D’Amico

Position here
an image

inside a circle

Position here
an image

inside a circle

Position here
an image

inside a circle

Position here
an image

inside a circle

AWS Services Bref

Octane Laravel Livewire

● AWS Cloudfront: Content Delivery Network
● AWS API Gateway: Create, manage, and monitor

scalable, secure APIs
● AWS Lambda: Run serverless code in response to

events

● In addition to them, we used Serverless Framework
to manage and deploy the application infrastructure

Technologies adopted
AWS Services

Position here
an image

inside a circle

Position here
an image

inside a circle

Position here
an image

inside a circle

Position here
an image

inside a circle

AWS Services Bref

Octane Laravel Livewire

Bref is a framework to write, deploy, and run serverless
PHP applications on AWS Lambda.

Technologies adopted
Bref

Position here
an image

inside a circle

Position here
an image

inside a circle

Position here
an image

inside a circle

Position here
an image

inside a circle

AWS Services Bref

Octane Laravel Livewire

Laravel Octane: High-performance, concurrent request
handling for Laravel applications

Technologies adopted
Laravel Octane

Position here
an image

inside a circle

Position here
an image

inside a circle

Position here
an image

inside a circle

Position here
an image

inside a circle

AWS Services Bref

Octane Laravel Livewire

● Laravel: PHP framework
● Livewire: Full-stack framework for Laravel,

enabling reactive, dynamic interfaces without
JavaScript

Technologies adopted
Laravel + Livewire

The challenge

A new product direction
THE CHALLENGE

⛓
Decoupling business logic
from listening experience

📲
Appealing UI and mobile-first
approach

💪
Build a strong and scalable
frontend foundation

🙉
Encourage listeners
engagement and interaction

Technical Constraints
THE CHALLENGE

⏯
Persistent mini-player across
pages navigation

Team primarily skilled in PHP

🔍
Product with heavily indexed
contents

🗿
Over a decade-old monolith
hindering product evolution

🗿Monolith hard to evolve
THE CHALLENGE

🔍 Heavily indexed contents
THE CHALLENGE

THE CHALLENGE

The solution
… and how we got there

THE SOLUTION

Proof of Concepts

PROs: SSR, fast, JS-based
CONs: steep learning curve, HTTP requests
needed to change page’s state, team with
PHP-oriented skills

PROs: SSR, huge community, frontend “PHP”
based
CONs: HTTP requests needed to change
page’s state

THE SOLUTION

BFF

THE SOLUTION

The application

Why Bref + Octane?

Octane vs PHP-FPM Network opt.
To deploy PHP applications and
setup the infrastructure on
Lambda

Bref
Octane caches the Laravel
application in RAM instead of
reading the files from the hard
drive and restarting the
framework with each
subsequent request

We consume our internal APIs
via HTTPS using curl/curl multi,
and we aim to avoid incurring
costs associated with TLS
handshake

https://www.cloudflare.com/lea
rning/ssl/what-happens-in-a-tl
s-handshake/

THE SOLUTION

Parallel cUrl with
Connection Keep-Alive
With persistent connections,
there's no need to repeatedly
establish new connections for
each request, resulting in
reduced overhead and faster
response times.

Parallel cURL with Keep-Alive
maximizes network utilization,
reducing latency and speeding
up data retrieval.

Why Livewire?

Real-Time Updates Integration with
LaravelWrite interactive web interfaces

using only PHP, eliminating the
need for complex JavaScript
frameworks

Frontend with PHP
It leverages the power of
Laravel's server-side logic to
handle user interactions and
update the UI dynamically,
providing a seamless user
experience.

This ensures consistency and
coherence throughout your
application, while also
benefiting from Laravel's robust
ecosystem and community
support.

THE SOLUTION

Why Livewire?

THE SOLUTION

Spreaker
Next

Did everything go smoothly?
Of course it didn’t!

Coexistence current and new website
CHALLENGES FACED

Shared Sessions
CHALLENGES FACED

Although OAuth2
authentication is available
through the Spreaker API, we
aimed to reduce networking
costs.

CHALLENGES FACED

Octane Memory Leaks

Octane keeps the application
in memory between requests;
therefore, adding data to a
statically variables may result
in a memory leak.

It is the intended behaviour for
certain services (eg. the Redis
client or the client that
performs requests to Spreaker
API)

CHALLENGES FACED

Contents routing revamped

Is there anything else worth
sharing?

THE SOLUTION

Serverless deploy

Local env against staging and prod data
THE SOLUTION

To speed up local development
and debugging, we built a user
provider able to make requests
against staging and production
environments given a proper
authentication token

THE SOLUTION

Observability layer

THE SOLUTION

Metrics

Cost Forecasts
THE SOLUTION

Based on the current
traffic-generated costs, we
anticipate an average daily
cost of around $21, with a
projected annual cost of
approximately $5k.

THE SOLUTION

Timeline POCs, Foundational
September - December, 2023

New Routes
December, 2023

Iteration 0
January-February, 2024

Iteration 1
March, April 2024

Release
April 2024

Originally scheduled for early
Q4 2024, we moved up the
switch date to early Q2 as
soon as we observed
encouraging development
speed and stickiness metrics.

KEY TAKEAWAYS

Is it possible to build modern and scalable apps
with PHP in 2024?
We think so, but try it out and
let us know your POV!

🔗 next.spreaker.com

https://next.spreaker.com

